The CEE-Selector™ Assay: A tool for the identification of rare allele variants

Vassilios Alexiadis, Tim Watanaskul, Karena Kosco, Julie A. Mayer and Lyle Arnold Biocept, Inc. 5810 Nancy Ridge Drive, Suite 150, San Diego CA 92121 www.biocept.com

Abstract

Molecular assays for the identification of rare allele occurrences are important tools for proper cancer classification and treatment. A prime example is the T790M mutation in EGFR which leads to resistance to the tyrosine kinase inhibitors gefitinib (Iressa $®$) and erlotinib (Tarceva $®$) used in the treatment of non-small cell lung cancer (NSCLC). Identification of the T790M mutation in cancer-shed particles in blood (either as whole cells or subcellular vesicles) calls out the need for an
alternative cancer treatment. We have developed a highly sensitive PCR-based assay which allows the identification of the T790M mutation in blood plasma (either when present in MRNA or genomic DNA). The assay combines Real-Time PCR as well as melt curve analysis of the mutant PCR product and is followed by sequencing to verify the presence of the mutation. The Selector ${ }^{\text {TM }}$ Assay is based on a wild-type specific PCR blocker and allows the mutant template to be amplified in a high background of wild-type template. A few copies of T790M mutant can be detected in greater than a 1000 -fold excess of wild-type. Data using the SelectorTM Assay with
clinical lung cancer samples as well as H1975 cells spiked and recovered from whole blood using Biocept's microchannel technology are presented. The Selector ${ }^{T M}$ Assay can be applied to other mutations relevant to cancer and is a valuable tool for clinical can be applied

Methods

Results

Selector ${ }^{\text {TM }}$ Assay Performance

Lung cancer plasma samples
Real-Time PC

+ Selector

Sanger Sequencing

Standard Curve

NSCLC Patient Results: T790M* Selector ${ }^{\text {TM }}$ Assay

Biocept Microchannel: Spike and Recovery of H1975 from whole blood

Conclusions

- Selectortu Assay suppresses wild-type amplification by $>100,000$ fold. - Has litite to no suppressive efficect on the amplification of mutant alleles. old excess, in a complex - The presence of a widd-type aliele at \bar{c} ze.000
- Works with both DNA and FNA targets from clinical samples.

Demonstrated the utility of the TT9oM Selector"m assay in NSCLC patient samples.
Works in real-time, end-point, and mell-curve analysis. Seamlessly interfaces to sequencing, and other confirmatory methods of
analysis, once mutant alleles are selectively amplified.

