Circulating Tumor Cell (CTC) Biomarker Evaluation from Patients with Metastatic Breast Cancer (MBC) Utilizing the Target Selector™ Platform

Erika P. Hamilton, MD;* Denise A. Yardley, MD;† Howard A. Burris III, MD;‡ Mythili Shasty, PhD;† Lu Huynh, BS;§ Bika Bhikha;¶ Veena M. Singh, MD;¶

*Sarah Cannon Research Institute, Nashville, TN; †Tennessee Oncology, Nashville, TN; ‡Biocept, Inc., San Diego, CA

BACKGROUND

-Circulating blood biomarkers represent the promise of non-invasive, real-time surrogates for tumor tissue-based biomarkers. They also afford the opportunity to monitor the evolution of tumor cells and acquired resistance to treatment over time.

-Circulating tumor cells (CTCs) are cells that disseminate from tumors and recent advances in this arena have permitted the biomarker and detection of CTCs in peripheral blood.

-The Target Selector™ and the FDA-approved CellSearch® platforms are emerging tools for the detection and characterization of CTCs. In contrast to the FDA- approved platform, Biocept's Target Selector™ platform utilizes a proprietary antibody capture cocktail with a novel microfluidic system that enables enrichment, enumeration, and characterization of CTCs, including cytokeratin- positive (CK+) and cytokeratin-negative (CK-) CTCs, thus detecting a broader range of cancer phenotypes.

-Therefore, the objective of this pilot study is to detect expression of ER, and amplification of HER2 and FGFR1 on CTCs (CK+ and CK-) isolated from metastatic breast cancer (MBC) patients using the Target Selector™ platform.

-METHODS

-Seventy-four (74) ER+ and HER2+ MBC patients (pts) were consented for this study.

-Peripheral blood of MBC pts and archival tumor tissue.

-Concordance rates (%) of ER expression between CTCs in the peripheral blood of MBC pts and archival tumor tissue.

-Concordance rates (%) of HER2 amplification between CTCs in the peripheral blood of MBC pts and archival tumor tissue.

-Concordance rates (%) of FGFR1 amplification between CTCs in the peripheral blood of MBC pts and archival tumor tissue.

-RESULTS

-Blood drawn into Biocept's proprietary CEE-Sure® blood collection tubes from consented patients for utilization in the Target Selector™ platform.

-CTCs were detected in 73 out of 74 (99%) pt blood samples (range, 2-4471); 62% (45/73) had both CK+ and CK- CTCs, and 38% (28/73) had only CK+ CTCs.

-Of those pts with CK+ CTCs, concordance for ER expression (+ or -) between tissue and blood analyses was 84% (38/45). Concordance was much lower for pts with only CK- CTCs (18%, 5/28).

-Concordance for HER2 amplification in pts with CK+ CTCs was 93% (41/44) and 68% (10/15) in pts with only CK+ CTCs.

-Concordance for HER2 amplification data was available for 39 pts. For this study, there was a latency period between blood draws and tissue processing (i.e., downregulation of proteins). A difference in concordance between cytokeratin-positive and cytokeratin-negative CTCs was present in the blood sample. This may represent a variety of factors including phenotypic variability in cytokeratin-negative cells undergoing epithelial to mesenchymal transformation (i.e., downregulation of proteins).

-CONCORDANCE RATE OF HER2 AMPLIFICATION (FISH)

-CONCORDANCE RATE OF FGFR1 AMPLIFICATION (FISH)

-CONCORDANCE RATE OF ER EXPRESSION (IHC/IF)

-DISCUSSION

-Blood-based testing for CTCs affords an opportunity to assess biomarker status in real time during treatment as well as in circumstances when tissue is not readily available or when tissue processing (i.e., decalcification of bone) makes biomarker testing less reliable.

-SUPPORT

-This pilot study was sponsored by Sarah Cannon Research Institute (SCRI) and supported by funding from Biocept, Inc.

-DISCLOSURE

-CTCs were discovered in nearly all MBC pts that participated in this study. CK+ CTCs were found in the majority of pts (62%).

-For this study, there was a latency period between blood draws and tissue collections for biomarker assessment. This latency period may have influenced concordance levels.

-For Concordance of all biomarkers (ER, HER2, and FGFR1) was higher when cytokeratin-positive CTCs were present in the blood sample. This may represent a variety of factors including phenotypic variability in cytokeratin-negative cells undergoing epithelial to mesenchymal transformation (i.e., downregulation of proteins).

-This pilot study was sponsored by Sarah Cannon Research Institute (SCRI) and supported by funding from Biocept, Inc.

-Contact the corresponding author for permission to reproduce/ distribute.

-Disclaimer: Lu Huynh, BS and Veena M. Singh, MD are employed by Biocept, Inc.


*Corresponding author.